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Scientists have identified alterations in the concentration dynamics of
specific hormones as risk factors for common cancers such as breast o N N N
cancer (estrogen, progesterone), endometrial cancer (estrogen), and Molecular Cellular Organ Individual Population Intratesticular Stermdogemc Pathway
prostate cancer (estrogen, testosterone). These adverse hormonal changes
in the tightly regulated endocrine pathways can be induced from exposure
to exogenous endocrine disruptors. Chemicals capable of acting as

Biological
endocrine disruptors are ubiquitous with environmental sources that
include household detergents, pesticides, plastics, pharmaceutical Effects
estrogens, industrial chemicals, and byproducts of incineration, paper
production, and fuel combustion. Ecological exposures to endocrine
disruptors are primarily from industrial and waste water treatment effluents,
while human exposures are mainly through the food chain. The adverse

effects induced by exposure to endocrine disruptors can be mediated .
through alterations in the enzymes involved in steroid synthesis. We are Biomarkers
developing a model of the and
intraovarian metabolic network that mediates steroid synthesis to describe
the dose-response for endocrine disruptors, and to identify and link new
robust molecular biomarkers of exposure that are indicative of the ultimate
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* Recovery phase: 8 days

Tissue sampling: day 1, 4, 8, and 16

adverse effects. The deterministic model describes the biosynthetic
pathways for the conversion of cholesterol to the sex steroid hormones
(estradiol, testosterone, and 11-ketotestosterone) secreted by the testes in Computational
fish. The model includes the intermediate metabolites and enzymatic model

reactions for the multiple pathways involved in the biosynthesis of the sex

steroids. Changes in the concentration dynamics of the secreted hormones
are used as an index of the endocrine disruption. The initial concentrations §
and enzyme kinetic reaction rates were taken from the literature or set to Small fish
biologically reasonable values. This mechanistic model allows for an model
improved understanding of the source-to-outcome linkages and dynamic
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* Apply an iterative optimization algorithm
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This work was reviewed by the U.S. EPA and approved for publication but
does not necessarily reflect Agency policy.

Conceptual systems model shows key regulatory components of HPG axis. Green and red arrows 3 par ameters: 1V
indicate activation and negative feedback (inhibition), respectively. White boxes indicate proteins and
peptides. Small molecules (e.g. steroids and neurotransmitters) are shown in italics.
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